
Modernize the product to
improve scalability & reliability

Contents
Contents

Monolith to
Microservice

SOA to
Microservices

Monolith to
Modular Monolith

Accelerated feature develop-
ment by 2x for a legacy channel
marketing software

Handled 10K rows and 600
columns concurrently for 100
users for a supply chain platform

Rearchitected a Recruitment
Automation Software to Acceler-
ate Featured Development by 2X

Monolith to Microservice

Accelerated feature development by 2x
for a legacy channel marketing software

BACKGROUND: �

SOLUTION:

The channel marketing automation company collabo-
rates with enterprises, accelerating channel-driven
demand generation, strengthening partner engage-
ment, and growing channel revenue.

It wanted to modernize its platform by moving from
monolith to microservices architecture to improve the
feature cycle time and increase user engagement.

We developed a solution with-

• Strangler fig design pattern

◦ Replaced functionalities of the legacy system
with new microservices or modules.

◦ Ensured seamless co-existence and gradual
transition from the legacy system to the new
architecture.

• Anti-Corruption layer

◦ Implemented an anti-corruption layer to
shield microservices from being influenced or
corrupted by legacy system dependencies.

◦ Defined clear interfaces and protocols to
prevent contamination of new services by
legacy code or data structures.

• Micro frontend

◦ Integrated a React application as an iframe
within the existing. NET application.

◦ Enabled independent development and
deployment of frontend modules while main-
taining a cohesive user experience.

• Microservice architecture with EKS (Elastic Kuber-
netes Service)

◦ Adopted a microservice architecture pattern
leveraging EKS for container orchestration and
management.

◦ Enabled scalability, fault tolerance, and
efficient resource allocation through Kuberne-
tes-based infrastructure.

• HTTPS and Queue (SQS and SNS) for Communica-
tion between Legacy and New System

◦ Implemented HTTPS for secure communica-
tion between the legacy and new systems,
ensuring data integrity and confidentiality.

◦ Utilized Amazon Simple Queue Service (SQS)
and Simple Notification Service (SNS) for
reliable and asynchronous messaging
between components of both systems.

RESULTS:

CHALLENGES:
The implementation involved the challenges below-

• Understanding existing legacy systems by analyzing
codebase and architecture to learn about depen-
dencies and potential areas for improvement

• Co-existence of legacy and new systems for live
users

• Prioritizing the right features by developing a strate-
gic roadmap guiding modernization efforts

• Improved development speed and go-to-market
strategy

• Simplified features with better user experience.

• Accelerated customer acquisition.

• Enabled direct integration to platform - New
Business Offering.

SOA to Microservices

Handled 10K rows and 600 columns
concurrently for a supply chain platform

Scaled a platform to handle more than 10K rows and
600+ columns for 100+ concurrent users.

OUTCOME:

BACKGROUND: �

We worked with a supply chain management
software platform that has operations in 20 countries
with 10K buyers and 200K suppliers on the platform.

Its existing solution was not suitable to handle
scalability. With business expanding, the company
decided to modernize the system to improve concur-
rency control.

SOLUTION:

• We built a frontend like excel with responsive back-
end APIs, which could handle a concurrency of 3K
requests/second. It allowed 100 users with different
roles to make changes/format the sheet simultane-
ously.

• To support 10K rows and 600 columns for every
BOM, we migrated existing SQL to scalable NoSQL
(MongoDB) and migrated .NET monolith to node.js
based microservices.

• For awarding, we created an online excel supporting
over 10 million with search, filtering and sorting
options using our own database on Lucene search.

CHALLENGES:

• The existing solution was using an online excel to
manage Bill of Material (BOM) from buyers and
responses from sellers. But it could handle only 500
rows and 20 columns concurrently.

• The company had to process larger BOMs manual-
ly. It used to take 5-6 months to reward single
BOMs, and they wanted to reduce it to 5-6 weeks.

• They wanted to modernize their system to handle
10K rows and 600 columns concurrently for 100
users.

Monolith to Modular Monolith

Rearchitected a Recruitment Automation
Software to Accelerate Feature
Development by 2X

• Re-architecture

◦ Increased market share by penetrating small
and medium-sized companies.

◦ Accelerated feature development by 2x.

OUTCOME:

BACKGROUND: �

We teamed up with a recruitment automation
platform that helps recruiters organize recruitment
for fast growing lean organizations. The initial product
was built 17 years ago. Since then, the client added
many functionalities.

The existing on-premise version faced revenue
growth challenges as many organizations opted for
the pay-as-you-go model. Adding new functionality to
the legacy product also consumed a lot of time and it
inspired the client to think about re-architecture.

SOLUTION:

• Migrated to a single-page application.

◦ The tech stack was migrated from Java 7, JSP
Servlets, SOAP services to a single-page app
using Java 8 + Spring Boot,

◦ Vue.js and Angular JS were used for the
front-end and Solr-based search engine, Redis
cache.

• Migrated from monolith to a modular monolith

◦ Separate modules were implemented for
admin, recruitment, chatbot, authentication,
and integrations with Microsoft Teams, Google
Meet and Hackerrank.

• Implemented multi-tenancy

◦ To lower the cost of adoption and open new
revenue streams from small and medi-
um-sized companies.

CHALLENGES:

• Architectural limitations

◦ Our client was spending too much time
adding new features as the process was
impacting existing ones. Fixing these issues
was time-consuming and affected the devel-
oper morale.

◦ It was built using monolith architecture and
old technologies and was not supporting
multiple databases. It had a lot of boilerplate
code for security and session expiry, and
comprehensive test cases were not written.

• Poor user experience

◦ User interactions were not intuitive. Training
recruiters used to take a lot of time. It was not
supporting the custom reporting and
analytics.

• Difficult to upgrade product versions

◦ Upgrading to the latest version was difficult as
multiple versions of the product were created
to implement customer-specific features.

